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Spain
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Abstract. A Gelfan’d–Dyson mapping is used to generate a one-boson realization for the
non-standard quantum deformation ofsl(2,R) which directly provides its infinite- and finite-
dimensional irreducible representations. Tensor product decompositions are worked out for
some examples. Relations between contraction methods and boson realizations are also
explored in several contexts. So, a class of two-boson representations for the non-standard
deformation ofsl(2,R) is introduced and contracted to the non-standard quantum(1+1) Poincaŕe
representations. Likewise, a quantum extended Hopfsl(2,R) algebra is constructed and non-
standard quantum oscillator algebra representations are obtained from it by means of another
contraction procedure.

1. Introduction

Boson realizations of many symmetry algebras and superalgebras are known to be useful in
many problems of condensed matter [1] and nuclear physics [2]. Among the wide variety
of bosonization processes, we shall fix our attention on the so-called Gelfan’d–Dyson (GD)
mapping ofsl(2,R) [3], initially introduced in spin systems. The aim of this paper is to
show that deformed GD-type realizations are the most appropriate tools in order to construct
the representation theory of non-standard (orh-deformed) quantumsl(2,R), here denoted
Uzsl(2,R), and other non-standard quantum algebras linked to it by means of contraction
limits. Therefore, we hope that the results reached in this paper can be directly applied to
deformed shell models or coherent state methods where GD maps have been proven to be
very successful.

First, we recall that the standard deformation ofsl(2,R) [4–6] is associated to the
(constant) solutionr = J+ ∧ J− of the modified classical Yang–Baxter equation (YBE).
This quantum algebra has been fully developed and extensively applied (see [7]). However,
there also exists a non-standard deformation linked to the solutionr = J3 ∧ J+ of the
classical YBE. This deformation (which was first introduced at a quantum group level
[8, 9], and later as a quantum Hopf algebra [10]) has recently attracted much attention.
For instance, it has been applied to build up higher-dimensional non-standard quantum
algebras [11] as well as the non-standardq-differential calculus [12, 13]. Its universal
quantumR-matrix [14, 15] and its irreducible representations [16–18] have also been
studied.

Furthermore, there exists a close relationship betweenUzsl(2,R) and the non-standard
quantum(1+ 1) Poincaŕe [19, 20] and oscillator algebras [21]. In particular, all of them
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have a similar Hopf subalgebra determined by the two generators involved in the classical
r-matrix, sharing also a formally identical universalR-matrix. We will show that most
of these common features can be explained by a contraction scheme connecting all these
non-standard quantum algebras.

In section 2 we introduce the representation theory ofsl(2,R) with the aid of
the one-boson GD realization. Afterwards, we build the one-boson infinite-dimensional
representations forUzsl(2,R) by following the same lines. It turns out that their explicit
form is somewhat more complicated than those of the standard deformation [22, 23]
in the sense that they cannot be obtained by the mere substitutions of numbers byq-
numbers. The corresponding finite-dimensional representations are deduced in a very natural
way obtaining closed expressions for their matrix elements in any dimension. Similar
results were derived in [17, 18] by using a recurrence method in another basis. In this
paper, it will be shown that, as it is known for Lie algebras, boson realizations furnish
us with many advantages also in the context of deformed algebras: (i) they provide
us with more simple, direct and manageable expressions for the representations. (ii)
They make evident how to build different classes of representations: finite, bounded or
not bounded infinite-dimensional representations. (iii) They allow us to easily connect
representations of non-isomorphic algebras by means of contractions. (iv) Differential
(difference) realizations of the algebras under consideration are easily obtained from
them.

On the other hand, these deformed representations should be fully consistent with the
deformed composition of representations given by the quantum coproduct. In section
3 we illustrate such a problem for some low-dimensional representations showing that
complete reducibility holds and preserves the same well known classical angular momentum
decomposition rules in tensor product spaces. However, non-standard Clebsch–Gordan
coefficients are shown to be essentially different to those of the standard deformation.

The remaining sections of the paper are devoted to studying the relations between
deformed boson realizations and contractions. Thus, two-boson GD representations for
Uzsl(2,R) are introduced in section 4. They are shown to be the most adequate objects
to obtain the representations of the non-standard quantum Poincaré algebra by means of
a contraction process. In section 5 we also present a suitable quantum deformation of
the (pseudo-)extended Lie algebrasl(2,R) together with its one-boson representations
so that they give rise, also through a contraction procedure, to the representations of
the non-standard quantum oscillator algebra. The extension introduced here contains
some interesting features that will be discussed later. Finally, some remarks close the
paper.

2. One-bosonUzsl(2,R) representations

2.1. Classical one-boson representations

To start with we shall consider the classical Lie algebrasl(2,R)

[J3, J+] = 2J+ [J3, J−] = −2J− [J+, J−] = J3 (2.1)

whose irreducible representations are characterized by the eigenvalue of the quadratic
Casimir element

C = 1
2J

2
3 + J+J− + J−J+. (2.2)
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If the generators{a−, a+} close a boson algebra, i.e. [a−, a+] = 1, then, the realization of
sl(2,R) given by

J+ = a+ J3 = 2a+a− + β1 J− = −a+a2
− − βa− (2.3)

whereβ is a free parameter, is known as the GD one-boson realization [3, 24]. The GD
map (2.3) can be used in order to easily get any of thesl(2,R) ≈ su(1, 1) irreducible
representation series [25]. For our purposes we only recall the bounded representations.

2.1.1. Lower-bounded representations.When the operatorsa−, a+ act in the usual way
on the number states Hilbert space spanned by{|m〉}∞m=0, i.e.

a+|m〉 =
√
m+ 1|m+ 1〉 a−|m〉 =

√
m|m− 1〉 (2.4)

(2.3) leads to a lower bounded representation:

J+|m〉 =
√
m+ 1|m+ 1〉 J3|m〉 = (2m+ β)|m〉

J−|m〉 = −
√
m(m− 1+ β)|m− 1〉. (2.5)

The Casimir eigenvalue being

C = β(β/2− 1). (2.6)

For negative integer values ofβ, hereafter denoted asβ− ∈ Z−, the representation (2.5)
is reducible leading to a finite-dimensional irreducible quotient representation of dimension
|β− − 1|. For instance,β− = −1 (C = 3

2) provides the two-dimensional representations of
sl(2,R) by setting|2〉 ≡ 0:

J+|0〉 = |1〉 J+|1〉 = 0 J3|0〉 = −|0〉
J3|1〉 = |1〉 J−|0〉 = 0 J−|1〉 = |0〉.

(2.7)

The numbers〈m|X|m′〉 where 〈m|m′〉 = δm,m′ give the matrix elements of these
representations; in the previous example, we have

J+ =
( · ·

1 ·
)

J− =
( · 1
· ·

)
J3 =

(−1 ·
· 1

)
. (2.8)

2.1.2. Upper-bounded representations.Quite similar upper-bounded representations can
be defined in the suplementary space{|m〉}−1

m=−∞. However, in order to avoid the complex
numbers in the accompanying square roots (2.5) inside this space, we shall redefine the
basis vectors in the form|m〉 → −1√

m
|m〉, so that the boson operators act as

a+|m〉 = −(m+ 1)|m+ 1〉 a−|m〉 = −|m− 1〉 (2.9)

leading to thesl(2,R) action

J+|m〉 = −(m+ 1)|m+ 1〉
J3|m〉 = (2m+ β+)|m〉
J−|m〉 = (m− 1+ β+)|m− 1〉.

(2.10)

The finite-dimensional representations are now originated forβ+ −2 ∈ Z+, with dimension
β+ − 1. However, note that in this case the action (2.10) allows for an invariant subspace,
so that it is not necessary to use the quotient mechanism to reach irreducibility.

These representations are particularly well suited for describing the differential version
of the GD map (2.3),

J+ = ∂x J3 = −2x∂x + β − 2 J− = −x2∂x + (β − 2)x. (2.11)
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The basis functions will be the positive integer powers{xn}+∞n=0, with the identification
xn ≡ |−n−1〉. In particular for the values of the labelβ given byβ+−2 ∈ Z+ the support
space for the finite(β+−1)-dimensional representations is generated by the monomials
{1, x, x2, . . . , xβ+−2}. Note also that (2.11) reproduces forβ = 2 the usual differential
realization of the Lie algebra of the conformal group for the one-dimensional Euclidean
space.

Finite-dimensional representations obtained from the lower- (labelled byβ−) or upper-
bounded ones (denoted byβ+) are equivalent wheneverβ+−2 = |β−| = −β−. Indeed in
this case the Casimir (2.6) is the sameCβ− = Cβ+ . Hereafter we shall introduce the notation
|β−−1| = β+−1 = 2j+1, wherej is a half positive integer that should be identified
with the label of the integer(2j+1)-dimensional representations ofsl(2,R) ≈ su(1, 1)
[25]. Using this notation, the Casimir (2.6) will turn into the more familiar expression
C = 2j (j+1).

2.2. Quantum one-boson representations

The Hopf algebraUzsl(2,R) deforming the bialgebra generated by the classicalr-matrix
r = zJ3∧J+ is characterized by the following coproduct, counit, antipode and commutation
rules (see [15]):

1(J+) = 1⊗ J+ + J+ ⊗ 1

1(J3) = 1⊗ J3+ J3⊗ e2zJ+

1(J−) = 1⊗ J− + J− ⊗ e2zJ+

(2.12)

ε(X) = 0 for X ∈ {J3, J+, J−} (2.13)

γ (J+) = −J+ γ (J3) = −J3e−2zJ+ γ (J−) = −J−e−2zJ+ (2.14)

[J3, J+] = e2zJ+ − 1

z
[J3, J−] = −2J− + zJ 2

3 [J+, J−] = J3. (2.15)

The quantum Casimir is

Cz = 1

2
J3e−2zJ+J3+ 1− e−2zJ+

2z
J− + J− 1− e−2zJ+

2z
+ e−2zJ+ − 1 (2.16)

and the universalR-matrix reads

R = exp{−zJ+ ⊗ J3} exp{zJ3⊗ J+}. (2.17)

A realization ofUzsl(2,R) in terms of the boson algebra [a−, a+] = 1 reads

J+ = a+ J3 = e2za+ − 1

z
a− + β e2za+ + 1

2

J− = −e2za+ − 1

2z
a2
− − β

e2za+ + 1

2
a− − zβ2 e2za+ − 1

8
.

(2.18)

The limit z → 0 of (2.18) gives rise to the GD realization (2.3) forsl(2,R) while the
Casimir keeps the same eigenvalue (2.6) along the whole process.

The GD-like quantum formulae (2.18) allow us to directly compute closed expressions
for any representation of this quantum algebra (in this respect, the following results can be
compared with the more elaborate derivation of such representations given in [17, 18]).

In this way, lower-bounded representations can be obtained from (2.4), by taking into
account that

e2za+|m〉 = |m〉 +
∞∑
k=1

(2z)k

k!

√
(m+ k)!
m!

|m+ k〉 (2.19)
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so that the action of (2.18) on the states{|m〉}∞m=0 for anyβ is obtained:

J+|m〉 =
√
m+ 1|m+ 1〉

J3|m〉 = (2m+ β)|m〉 +
∞∑
k=1

(2z)k

k!

√
(m+ k)!
m!

(
2m

k + 1
+ β

2

)
|m+ k〉 (2.20)

J−|m〉 = −
√
m(m− 1+ β)|m− 1〉 −

∞∑
k=1

(2z)k

k!

√
(m+ k)!
m!

×
{

m√
m+ k

(
m− 1

k + 1
+ β

2

)
|m− 1+ k〉 + zβ

2

8
|m+ k〉

}
.

For β ≡ β− ∈ Z− this action directly provides, by means of a quotient space, the finite-
dimensional representations of dimension|β−−1| in much the same way as for the classical
counterpart. Therefore, we will denote|β− − 1| = 2jz + 1 ∈ Z+ being jz = 0, 1

2, 1 . . ..
Indeed it is clear that (2.20) contains power series inz whose first terms coincides with
the non-deformed analogue shown in (2.5). As the simplest example, we write down the
two-dimensional matrix representation withβ− = −1, Cz = 3

2 and jz = 1
2 (compare with

(2.8)):

J+ =
( · ·

1 ·
)

J− =
( · 1
− 1

4z
2 z

)
J3 =

(−1 ·
−z 1

)
. (2.21)

The finite-dimensional representations provide explicit solutions of the quantum YBE.
The computations are considerably simplified due to the factorized form of theR-matrix
(2.17); the one corresponding to the above example reads

R =


1 · · ·
−z 1 · ·
z · 1 ·
z2 −z z 1

 . (2.22)

Upper-bounded representations on polynomial spaces{xn}+∞n=0 are supplied by means of
the operator

Dz ≡ (e2z∂x − 1)/2z. (2.23)

Note that the action ofDz is just that of a discrete derivative:

Dzφ(x) = (φ(x + 2z)− φ(x))/2z.
Now it is easy to check that (2.18) gives rise to the following differential–difference
realization ofUzsl(2,R):

J+ = ∂x J3 = −2Dzx + zβDz + β

J− = −Dzx
2+ zβDzx − z

2β2

4
Dz + βx.

(2.24)

From these expressions, we see that non-standard quantum deformations are related to
a difference calculus quite different to that of standardUqsl(2,R). In analogy to the
classical case, the finite-dimensional representations originated from (2.24) forβ+−2 ∈ Z+
(β+−1 ≡ 2jz+1) are also supported by〈1, x, . . . , xβ+−2〉. These representations, simply
denoted byjz, will be applied in some examples in the next section.
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3. Tensor product representations and decomposition rules

Given a pair of representations for theUzsl(2,R) algebra acting on the vector spacesH1,
H2 the coproduct (2.12) originates a new representation in the tensor product spaceH1⊗H2.
Although the initial representations may be irreducible the final coproduct representation
will be in general reducible. We shall see that, for some particular finite-dimensional
cases worked out below, the coproduct representation is completely reduced into irreducible
components following the same well known rules valid for the classicalsl(2,R) integer
representations. Using the conventional notation [26], this decomposition can be written as

jz ⊗ j ′z = |jz + j ′z| ⊕ |jz + j ′z − 1| ⊕ · · · ⊕ |jz − j ′z| (3.1)

wherejz andj ′z are positive half-integers corresponding to the quantum representations of
dimension 2jz + 1 or 2j ′z + 1, respectively. However, the vector basis of the irreducible
support subspaces expressed in terms of the original basis (i.e. the Clebsch–Gordan
coefficients) become quite different to those of thesl(2,R) Lie algebra due to extra terms
containing powers of the deformation parameterz.

We shall examine these features in detail for two simple examples by using the
differential realizations given in (2.24) that are particularly easy to handle for computations.

3.1. 1
2 ⊗ 1

2 representations

The representationj = 1
2 for the Lie algebrasl(2,R) is realized in the polynomial

vector space spanned by{|−1〉 = 1, |−2〉 = x}. For j = 1 the basis is chosen in the
form {|−1〉 = 1, |−2〉 = x, |−3〉 = x2}; we shall use the variabley for the second
space in the tensor product. The coproduct representation in this case is defined by
1clas(X) = 1⊗U1/2(X)+U1/2(X)⊗1, whereX holds for any of the algebra generators and
U1/2 is for the j = 1

2-spin representation. The decomposition1
2 ⊗ 1

2 = 1⊕ 0 has support
spaces whose basis are

Hclas
1 = 〈Eclas

−1 ≡ 1,Eclas
−2 ≡ 1

2(x + y),Eclas
−3 ≡ xy〉

Hclas
0 = 〈U clas

−1 ≡ 1
2(x − y)〉. (3.2)

Obviously, the triplet generatingHclas
1 is symmetric under the permutation mapσ(a⊗ b) =

b ⊗ a, while the singlet underlyingHclas
0 is antisymmetric.

Now, for the non-standardUzsl(2,R) the coproduct representation is defined according
to (2.12), and we consider the valueβ+ = 3 that corresponds to the casejz = 1

2 (2.21). The
reduction 1

2 ⊗ 1
2 = 1⊕ 0 also remains correct. Here, the representationjz = 1 is obtained

with β+ = 4, while 0 is of course for the trivial representation. Explictly, the invariant
vector subspacesH1 = 〈E−1,E−2,E−3〉 andH0 = 〈U−1〉 are as follows in terms of the
basis (3.2):

E−1 = Eclas
−1

E−2 = Eclas
−2

E−3 = Eclas
−3 +

3z2

4
Eclas
−1 + zU clas

−1

U−1 = U clas
−1 +

z

2
Eclas
−1 .

(3.3)

Note that symmetry in the basis ofH1 and antisymmetry inH0 do not hold unless we
assume that the permutation mapσ transforms the deformation parameterz into −z. On
the other hand, it can easily be proven that, for allz, the transformation (3.3) is always



Boson representations 6803

well defined. Therefore, roots of unity seem to be not privileged for the non-standard
deformation.

3.2. 1⊗ 1
2 representations

First we shall supply the basis ofH1⊗1/2 = Hclas
3/2⊕Hclas

1/2 for the reduction 1⊗ 1
2 = 3

2⊕ 1
2 in

the Lie algebra context. For thej = 3
2 representation we use the basis{|−1〉 = 1, |−2〉 =

x, |−3〉 = x2, |−4〉 = x3}, and the invariant subspaces in the classical tensor product are
spanned by

Hclas
3/2 = 〈Eclas

−1 ≡ 1,Eclas
−2 ≡ 1

3(y + 2x),Eclas
−3 ≡ 1

3(2xy + x2),Eclas
−4 ≡ x2y〉

Hclas
1/2 = 〈U clas

−1 ≡ 1
2(y − x),U clas

−2 ≡ 1
2xy − x2〉. (3.4)

With respect to the deformed quantum algebraUzsl(2,R) it can be checked directly that
its coproduct leads to the same direct sum reduction 1⊗ 1

2 = 3
2⊕ 1

2 on the same polynomial
vector spaceH1⊗1/2 but with new invariant subspacesH3/2 = 〈E−1,E−2,E−3,E−4〉 and
H1/2 = 〈U−1,U−2〉 given by the following deformed change of basis:

E−1 = Eclas
−1

E−2 = Eclas
−2

E−3 = Eclas
−3 +

3z2

4
Eclas
−1 −

2z

3
U clas
−1

E−4 = Eclas
−4 +

9z2

4
Eclas
−2 −

9z3

4
Eclas
−1 − 2zU clas

−2 −
z2

3
Eclas
−1

U−1 = U clas
−1 −

z

2
Eclas
−2

U−2 = U clas
−2 −

3z

8
Eclas
−3 +

3z2

8
Eclas
−2 .

(3.5)

As expected, the limitz→ 0 provides the classical partners of the reduction process.
At this point it is worth mentioning that representations of the standard deformation

of sl(2,R) are strongly different from their non-standard counterparts. On one hand, such
standard representations can be essentially constructed by substituting some matrix elements
of the classical matrices by the correspondingq-numbers [27] and, consequently, the same
holds for the Clebsch–Gordan coefficients. This straightforward method is no longer valid
for the non-standard case, whereq-numbers do not work and, moreover, some new non-
vanishing Clebsch–Gordan coefficients have to be added with respect to the classical theory.
Sinceq-numbers are directly related to the peculiarities at roots of unity, the loss of such
properties in the non-standard case seems quite natural.

4. Two-bosonUzsl(2,R) representations and their contraction to Poincaŕe

The one-boson representations ofsl(2,R) are closely linked with its geometrical
interpretation as a one-dimensional conformal algebra. In contrast, a description in terms
of two-boson algebras is physically related to its role as a(1+ 1)-dimensional kinematical
algebra. This fact allows us to perform a contraction in order to reach the quantum(1+ 1)
Poincaŕe algebra representations; such a process cannot be applied onto the one-boson
representations described in section 2.

We consider two independent boson algebras

[a−, a+] = 1 [b−, b+] = 1. (4.1)
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A two-boson GD representation ofUzsl(2,R) takes the form

J+ = a+ J3 = e2za+ − 1

z
a− − 2b+b−

J− = −e2za+ − 1

2z
a2
− + 2b+b−a− + αb+ + 2z(b+b− + b2

+b
2
−).

(4.2)

The limit z→ 0 gives rise to the classical two-boson GD realization

J+ = a+ J3 = 2a+a− − 2b+b−
J− = −a+a2

− + 2b+b−a− + αb+
(4.3)

which should be compared with the more common Jordan–Schwinger one [28].
Algebraically,Uzsl(2,R) can be contracted to a non-standard(1+ 1) Poincaŕe algebra,

UzP(1+ 1), by defining the generators as

P+ = εJ+ P− = εJ− K = 1
2J3 (4.4)

and by transforming the deformation parameter in the form

z→ ε−1z (4.5)

so that we obtain the following(1+ 1) Poincaŕe deformed Hopf algebra:

1(P+) = 1⊗ P+ + P+ ⊗ 1

1(K) = 1⊗K +K ⊗ e2zP+

1(P−) = 1⊗ P− + P− ⊗ e2zP+

(4.6)

ε(X) = 0 for X ∈ {K,P+, P−} (4.7)

γ (P+) = −P+ γ (K) = −Ke−2zP+ γ (P−) = −P−e−2zP+ (4.8)

[K,P+] = e2zP+ − 1

2z
[K,P−] = −P− [P+, P−] = 0. (4.9)

The quantum Casimir is found by contracting (2.16) as the limε→0(ε
2Cz) and theR-matrix

comes directly from the contraction of (2.17):

Cz = 1− e−2zP+

z
P− (4.10)

R = exp{−2zP+ ⊗K} exp{2zK ⊗ P+}. (4.11)

The corresponding classicalr-matrix is r = 2zK ∧P+. These results were obtained in [20]
by following a T -matrix approach.

In order to contract representation (4.2) we consider (4.4), (4.5) together with [29]:

a− → ε−1a− a+ → εa+ b− → b− b+ → b+ α→ εα. (4.12)

After the limit ε→ 0 the contracted two-boson representation becomes

P+ = a+ K = e2za+ − 1

2z
a− − b+b− P− = αb+. (4.13)

The kinematical interpretation underlying the quantum representations (4.2) and (4.13)
can be enlightened by considering the corresponding differential realizations provided by

a− = −x+ a+ = ∂

∂x+
≡ ∂+ b− = −x− b+ = ∂

∂x−
≡ ∂− (4.14)

where,x+ = t + x and x− = t − x can be identified, in the classical case, as light-cone
coordinates.
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5. ExtendedUzsl(2,R) and its contraction to the oscillator algebra

The infinite-dimensional representations for the non-standard quantum oscillator algebra
[21] can be deduced by performing a contraction on a (non-standard) quantum deformation
of the pseudo-extendedsl(2,R) Lie algebra. In this section we develop such a process at
both classical and quantum levels.

5.1. Classical level

It is well known that the following Lie algebra

[J3, J+] = 2J+ [J3, J−] = −2J− [J+, J−] = J3− I [I, ·] = 0 (5.1)

is a trivial central extension ofsl(2,R). The generatorI commutes with the original
sl(2,R) generators, and ‘trivial’ means that the algebra (5.1), hereafter denoted bysl(2,R),
is isomorphic to the direct sumsl(2,R)⊕R through the change of basisJ ′3 = J3− I . The
second-order Casimir forsl(2,R) is:

C = 1
2J

2
3 − J3I + J+J− + J−J+. (5.2)

The interest of the algebrasl(2,R) comes from the fact that it leads, through a careful
contraction, to a non-trivial extension of the(1+ 1) Poincaŕe algebra corresponding to a
constant non-zero background field [30]; this contracted extended algebra is isomorphic to
the oscillatorh4 Lie algebra.

The one-boson realization for (5.1) is

J+ = a+ J3 = 2a+a− + β1 J− = −a+a2
− − βa− + δa− I = δ1 (5.3)

where δ and β are free parameters related with the eigenvalue of the Casimir byC =
β(β/2− 1)+ δ(1− β). The contraction we are interested in is defined by

A+ = εJ+ A− = εJ− N = J3/2 M = ε2I (5.4)

so that in the limitε→ 0 we get the oscillatorh4 Lie algebra,

[N,A+] = A+ [N,A−] = −A− [A−, A+] = M [M, ·] = 0. (5.5)

The corresponding second-order Casimir is obtained as limε→0(−ε2C):

C = 2NM − A+A− − A−A+. (5.6)

The additional replacements

a− → ε−1a− a+ → εa+ β → β/2 δ→ ε2δ (5.7)

provide the one-bosonh4 realization:

N = a+a− + β A+ = a+ A− = δa− M = δ1. (5.8)

Hence the Casimir eigenvalue isC = δ(2β − 1). Note that (5.8) makes the difference
clearer between considering a pure boson algebra and the full harmonic oscillator algebra
h4.
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5.2. Quantum level: The non-standard oscillator

In the quantum context we closely follow the classical approach by defining an appropriate
quantum deformation ofsl(2,R) that must include the new generatorI . Such a new
quantum algebra is given by

1(J+) = 1⊗ J+ + J+ ⊗ 1

1(J3) = 1⊗ J3+ J3⊗ e2zJ+

1(J−) = 1⊗ J− + J− ⊗ e2zJ+ + zJ3⊗ Ie2zJ+

1(I) = 1⊗ I + I ⊗ 1

(5.9)

ε(X) = 0 for X ∈ {J3, J+, J−, I } (5.10)

γ (J+) = −J+ γ (I ) = −I γ (J3) = −J3e−2zJ+

γ (J−) = −J−e−2zJ+ + zJ3Ie−2zJ+
(5.11)

[J3, J+] = e2zJ+ − 1

z
[J3, J−] = −2J− + zJ 2

3

[J+, J−] = J3− Ie2zJ+ [I, ·] = 0.
(5.12)

The (coboundary) Lie bialgebra underlying this Hopf algebra is again generated by
r = zJ3∧ J+. Note that the new generatorI remains central and primitive; there is another
quantum Casimir given by

Cz = 1

2
J3e−2zJ+J3− J3I + 1− e−2zJ+

2z
J− + J− 1− e−2zJ+

2z
+ e−2zJ+ − 1. (5.13)

The Hopf subalgebra generated byJ3 and J+ is the same as in the non-extended
case, therefore, the universalR-matrix (2.17) is obviously a solution of the quantum YBE
for Uzsl(2,R). Furthermore, cumbersome computations show that thisR-matrix verifies
R1(J−)R−1 = σ ◦1(J−) in Uzsl(2,R) (the proof forI is trivial), so, we conclude that it
is also a universalR-matrix for the wholeUzsl(2,R). At this point it is worth mentioning
that another quantum deformation of the extendedsl(2,R) has recently been proposed in
[31] leading to a deformed oscillator algebra with classical commutation relations (however,
this deformation does not preserve the aforementioned subalgebra).

The one-boson realization ofUzsl(2,R) turns out to be a slight modification of the
non-extended case (2.18). Besides the new generatorI = δ1, the only generator that must
be changed isJ−:

J− = −e2za+ − 1

2z
a2
− − β

e2za+ + 1

2
a− − zβ2 e2za+ − 1

8
+ δe2za+a− + βz

2
δe2za+. (5.14)

Now we proceed to carry out the contraction fromUzsl(2,R) to the non-standard
quantum oscillator algebra [21], denotedUzh4. At the Hopf algebra level, we consider the
new generators defined by (5.4) and also the transformation of the deformation parameter
z (4.5). Thus, whenε→ 0 we arrive at the Hopf structure ofUzh4 given by

1(A+) = 1⊗ A+ + A+ ⊗ 1 1(M) = 1⊗M +M ⊗ 1

1(N) = 1⊗N +N ⊗ e2zA+

1(A−) = 1⊗ A− + A− ⊗ e2zA+ + 2zN ⊗Me2zA+

(5.15)

ε(X) = 0 X ∈ {N,A+, A−,M} (5.16)

γ (A+) = −A+ γ (M) = −M
γ(N) = −Ne−2zA+ γ (A−) = −A−e−2zA+ + 2zNMe−2zA+

(5.17)
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satisfying the commutators

[N,A+] = e2zA+ − 1

2z
[N,A−] = −A−
[A−, A+] = Me2zA+

[M, ·] = 0

(5.18)

where the classicalr-matrix is r = 2zN ∧ A+. Besides the generatorM there is another
central operator which is directly obtained from (5.13) by means of the limε→0(−ε2Cz)
giving rise to the expression

Cz = 2NM + e−2zA+ − 1

2z
A− + A− e−2zA+ − 1

2z
. (5.19)

Likewise, the corresponding universalR-matrix is found by contracting (2.17):

R = exp{−2zA+ ⊗N} exp{2zN ⊗ A+}. (5.20)

The boson representation ofUzh4 can be found using the same routine taking into
account (5.4), (4.5) plus the extra replacements (5.7). Thus we have

A+ = a+ M = δ1
A− = δe2za+a− + δβze2za+

N = e2za+ − 1

2z
a− + β e2za+ + 1

2
.

(5.21)

Hence, the action on the states{|m〉}∞m=0 reads

A+|m〉 =
√
m+ 1|m+ 1〉 M|m〉 = δ|m〉

A−|m〉 = δ
√
m|m− 1〉 + δ

∞∑
k=0

(2z)k+1

k!

√
(m+ k)!
m!

(
m

k + 1
+ β

2

)
|m+ k〉

N |m〉 = (m+ β)|m〉 +
∞∑
k=1

(2z)k

k!

√
(m+ k)!
m!

(
m

k + 1
+ β

2

)
|m+ k〉.

(5.22)

The explicit infinite-dimensional representations in the monomial basis{xn} as well as a
differential–difference realization in terms of operator (2.23) can now be readily obtained.

6. Concluding remarks

In this paper we have given a unified treatment for a class of non-standard quantum algebras
related toUzsl(2,R): its deformed extensionUzsl(2,R), the Poincaŕe algebraUzP(1+ 1),
and the non-standard oscillatorUzh4. All these algebras share the same Hopf subalgebra (in
theUzsl(2,R) case is generated by{J3, J+}) which leads to a formally identical universal
R-matrix for all of them.

At the same time we have computed the representations of these non-standard algebras
by means of boson operators. We would like to emphasize that, although the use of either
one- or two-boson realizations depends on the algebra considered, the generalizations of the
GD map here presented seems to be in general the appropriate non-standard bosonization
method, in contrast to the usual Jordan–Schwinger map, that turns out to be more adequate
for standard deformations. We have obtained simple closed expressions and applicable
differential realizations for theUzsl(2,R) representations (see also in this respect [17]) which
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parallel the Lie algebraic classification. For instance, finite-dimensional representations
have been shown to be labelled by integersjz and we have proven how their coproduct
representations decompose by following exactly the classical addition of angular momenta
[26].

Contraction processes relating the (one- or two-) bosonic representations of all these
non-isomorphic quantum algebras have been found. Careful attention was paid to define the
most adequate non-standard quantum deformation of the centrally pseudo-extended algebra
sl(2,R). Indeed, it has some original features with respect to other extensions already
defined in the context of quantum deformations (for instance, the way in which the central
extension generator enters into the deformed commutation rules). This extension allows for
a contraction toUzh4 that preserves the Hopf subalgebra{J3, J+}.

Finally, we would like to notice that the deformed boson algebra defined by

a+ = e2za+ − 1

2z
a− = a− + µz [a−, a+] = 1+ 2za+ (6.1)

allows us to obtain quadratic commutation rules for all these quantum algebras, once a
suitable change of the basis generators and a precise value ofµ have been chosen for each
case.
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